

C12

Receiving Card

CONTENT

1 Update Records	1
2 Product Introduction	
3 Product Characteristics	1
3.1 Improve the display effect	1
3.2 Improve maintainability	2
4 Product Appearance	3
4.1 Data Interface Description	4
4.2 Product Dimensions	5
4.3 Definition of Output Interface	6
5 product parameters	9
5.1 Basic parameters	9
5.2 Specification Parameters	9
5 Precautions	10

1 Update Records

Document Version	Hardware Version	Release Time	Update Record
V4.0	C12 (V1.2)	June 23(th), 2025	First release

2 Product Introduction

C12 is an ultra-small size high-end receiving card independently developed and launched by Mooncell, with a maximum of 8192 pixels Support 18-bit, pixel-by-pixel chromaticity correction, low delay, RGB independent Gamma adjustment, 90 multiple rotation of the screen, serial number detection of the receiving card, configuration parameter readback and other functions to improve the screen display effect and user experience;

The output of the board adopts universal plug-in interface with 2.0mm spacing, which has high stability and reliability. The size of C12 is only (73 mm x 24 mm), which is the smallest external dimension that can be realized in the industry. It can save design space, simplify the structural design of the screen and reduce the design difficulty, and with high cost performance. With the help of this system, customers can realize unprecedented innovative design.

3 Product Characteristics

3.1 Improve the display effect

Low delay

Reduce the delay of the video source at the receiving card end, and the delay is as low as 1 frame (for

RGB independent Gamma adjustment

With the independent master control and software supporting RGB independent Gamma adjustment, the problems such as uneven low gray and white balance drift of the display screen are effectively controlled by adjusting "red", "green" and "blue" respectively, making the picture more realistic.

• 90 multiple rotation of the picture.

With the help of AutoLED software, the picture is displayed in multiples of 90 (0, 90, 180, 270).

Brightness correction by pixels

With the correction software, the brightness and chromaticity of each pixels of the large screen are corrected, which effectively eliminates the color difference, makes the brightness and chromaticity of the display screen highly consistent, and improves the image quality of the display screen.

3.2 Improve maintainability

Data interface customization

With AutoLED software, the output data of the receiving card can be detected and edited.

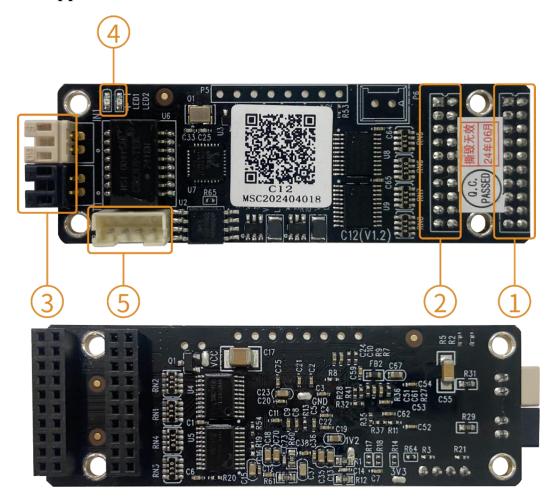
Complex structure box

In the advanced layout of AutoLED software, boxes can be arranged and constructed at will quickly.

• Construct complex large screen

In the complex display screen connection of AutoLED software, boxes can be arranged and constructed at will quickly.

Loop backup

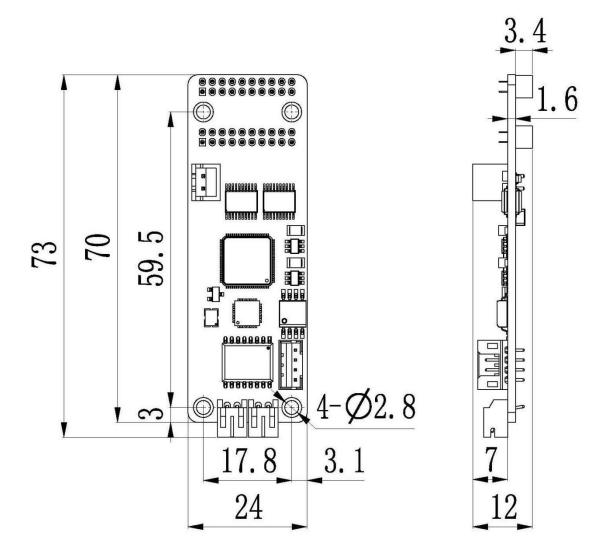

The network port is connected through the loop of the main and standby network cables to increase the reliability of the serial connection of the receiving cards. When one of the main and standby series lines fails, the other one can ensure the normal display of the screen.

- Small size and thickness save space for the increasingly narrow box and light bar.
- Single card outputs 24 sets of serial RGB data, 8 sets in parallel, and supports 4 clock extensions.
- Support any setting within 8192 pixels.
- Strong LED driver chip compatibility, supporting all conventional chip drivers.
- Support security upgrade
- Support the arbitrary offset of single card position and the rotation of single card display content to realize special-shaped screen.

- Reduce the number of cables and connectors and simplify the structural design of LED screen. Signal
 transmission only needs 2-core super-category 5 twisted pair, which can combine the display screen
 signal and power supply wiring into one design, and the peripheral cascade connection line is changed
 from the traditional two-in and two-out to one-in and one-out.
- The lamp board of the display screen can be integrated with the receiving card in modular design, and
 the module only needs to be disassembled and replaced separately in case of failure, which makes the
 after-sales maintenance simple and reduces the later maintenance cost.
- Integrated network transformer simplifies the design and improves the electromagnetic compatibility, which is helpful for users to successfully pass EMC certification.

4 Product Appearance

^{*} Product photos are for reference only, please refer to the products actually purchased.



4.1 Data Interface Description

#	Interface Name		Interface Description			
1	P1	Signal interface P1 o	utput to the display screen			
2	P2	Signal interface P2 o	utput to the display screen			
3	JP1	The 100-megabit sign	nal is input to the TX interface, and the signal interface is			
		input from the splitte	r SH100.			
	JP2	The 100-megabit sign	nal is output to the RX interface and cascaded to the next			
		receiving card.				
		Uniform slow flash	The receiving card works normally, the network cable is			
			connected normally, and no DVI signal is input.			
	C4-4 I. 1: - 4	Uniform flash	The receiving card works normally, the network cable is			
4	Status Indicator D1		connected normally, and there is DVI signal input.			
	DI	Constant extinction	No gigabit network signal			
		Flash 3 times at	The receiving card works normally, the network cable loop			
		intervals	is connected, and there is DVI signal input.			
4	Power Indicator	The red light is always on, which means the power supply is normal.				
	D2					
5	Р3	Signal interface for o	output to display screen, with 5V interface for power supply.			

4.2 Product Dimensions

Tolerance: 0.3 Unit: mm

4.3 Definition of Output Interface

24 groups of RGB serial data interface definitions

P	2			PI	
+5V	1 2 -	+5V	+5V	1 2	+5V
GND	3 4 -	GND	GND	3 4	GND
Data1	5 6 -	Data2	Data9	5 6	Data 10
Data3	7 8 -	Data4	Data 11	7 8	Data 12
Data5	9 10 -	Data6	Data13	9 10	Data 14
Data7	11 12	Data8	Data 15	11 12	Data 16
CLK1	13 14 -	CLK2	Data17	13 14	Data 18
CLK3 (C)	2000	CLK4 (D)	Data 19	1900 2000	Data20
LE		Œ	Data21	15 16 - 17 18 -	Data22
A	17 18 — 19 20 —	В	Data23	17 18 -	Data24
	19 20			19 20	

P2 Data Interface Definition

Illustration	Definition	Pin	Pin	Definition	Illustration
	+5V	1	2	+5V	
	GND	3	4	GND	
	DATA1	5	6	DATA2	D G D
RGB serial output data	DATA3	7	8	DATA4	RGB serial output data
	DATA5	9	10	DATA6	
	DATA7	11	12	DATA8	
Shift clock 1	CLK1	13	14	CLK2	Shift clock 2
Shift Clock 3/ Decoded Signal C	CLK3/C	15	16	CLK4/D	Shift clock 4/ decode signal D
Latch	LE	17	18	OE	Display enable
Line decoded signal	A	19	20	В	Line decoded signal

Description:

- 1. When using 5958 decoding drive, the decoded signal A is used as the DCLK signal of 5958, the decoded signal B is used as the BK signal of 5958, and the decoded signal C is used as the DIN signal of 5958.
- 2. When four extended groups of clocks are used, the scanning signal can only be connected with signals A and B; That is, when four groups of clock extensions are supported at most, pins 15 and 16 of P2 are used for CLK3 and CLK4; ; (Default routine)
- 3. When scanning signals A, B, C and D are used, the clock can only be extended by two groups; That is, when the scan is more than 4 scans, the pins 15 and 16 of P2 are used for C and D signals (customized program).

P1 Data Interface Definition

Illustration	Definition	Pin	Pin	Definition	Illustration
	+5V	1	2	+5V	
	GND	3	4	GND	
	DATA9	5	6	DATA10	
	DATA11	7	8	DATA12	
	DATA13	9	10	DATA14	
RGB serial output	DATA15	11	12	DATA16	DCD
data	DATA17	13	14	DATA18	RGB serial output data
	DATA19	15	16	DATA20	
	DATA21	17	18	DATA22	
	DATA23	19	20	DATA24	

8 groups of RGB parallel data interface definitions

	P2			P1	
+5V	1 2	+5V	+5V	1 2	+5V
GND	1 2	GND	GND	1 2	GND
R1	3 4	G1	B3	3 4 -	R4
B1	5 6 7	R2	G4	5 6 7	B4
G2		B2	R5		Œ
R3		G	B5		R6
CLK1	11 12 -	CLK2	G6	11 12 -	B6
CLK3 (C)	13 14 -	CLK4 (D)	R7	13 14 -	G7
LE	15 16 -	Œ	B7	15 16 -	R2
A	17 18 -	В	G8	17 18	B8
	19 20 -			19 20	

P2 Data Interface Definition

Illustration	Definition	Pin	Pin	Definition	Illustration
	+5V	1	2	+5V	
	GND	3	4	GND	
RGB parallel output	R1	5	6	G1	RGB parallel output data
data	B1	7	8	R2	responding curput data
	G2	9	10	B2	
	R3	11	12	G3	
Shift clock 1	CLK1	13	14	CLK2	Shift clock 2
Shift Clock 3/	CLK3/C	15	16	CLK4/D	Shift clock 4/ decode
Latch	LE	17	18	OE	Display enable
Line decoded signal	A	19	20	В	Line decoded signal

Description:

- 1. When using 5958 decoding drive, the decoded signal A is used as the DCLK signal of 5958, the decoded signal B is used as the BK signal of 5958, and the decoded signal C is used as the DIN signal of 5958.
- 2. When four extended groups of clocks are used, the scanning signal can only be connected with signals A and B; That is, when four groups of clock extensions are supported at most, pins 15 and 16 of P2 are used for CLK3 and CLK4; ; (Default routine)
- 3. When scanning signals A, B, C and D are used, the clock can only be extended by two groups; That is, when the scan is more than 4 scans, the pins 15 and 16 of P2 are used for C and D signals (customized program).

P1 Data Interface Definition

Illustration	Definition	Pin	Pin	Definition	Illustration
	+5V	1	2	+5V	
	GND	3	4	GND	
	В3	5	6	R4	
RGB parallel output data	G4	7	8	B4	
	R5	9	10	G5	
	В5	11	12	R6	DCD marrellal output data
	G6	13	14	В6	RGB parallel output data
	R7	15	16	G7	
	В7	17	18	R8	
	G8	19	20	В8	

P3 indicator interface definition

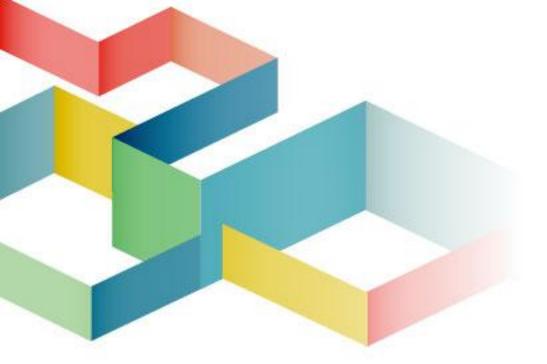
Pin	1	2	3	4
Definition	SWITCH	LED STATE	GND	3.3V

5 product parameters

5.1 Basic parameters

Serial (RGB)/ parallel	Maximum band	Brightness correction	Chroma correction band
	load (pixels)	band (pixel)	(pixel)
24 sets of serial data	8192	8192	4096
8 groups of parallel data	64×128	64×128	64×64
Number of cascaded cards		Support scanning lines	Clock expansion
≤1000PCS		1-4 sweep	Support 4 groups of clock
			extensions.

5.2 Specification Parameters


	Input voltage	DC3.5~5.5V		
Electrical parameters	Rated current	0.4A		
	Rated power	2W		
Working environment	Working temperature	-20°C~70°C		
working environment	Working humidity	10%RH~90%RH has no condensation.		
Storage environment	Temperature	-40°C~85°C		
Board size	73mm×24mm			
Net weight	10g Description: Weight of si	ngle card		
Outer packing size	490×335×120mm			
Gross weight of product	2.24Kg Description: Including wire, accessories			
Pack Mode	100PCS /box			
Certificate Information	Comply with RoHS standards and CE-EMC standards.			

^{*} Current and power consumption may vary according to different factors such as product usage, environment and settings.

6 Precautions

- The installation process must be completed by professionals.
- Must be antistatic.
- Please pay attention to waterproof and dust removal.

National after-sales service hotline: 400-881-3531

Official website: www.mooncell.com.cn.

Address: Mooncell Building, No.3 Industrial Zone, Baoshi South Road,

Shiyan Street, Baoan District, Shenzhen

